

Wastewater Measurements Total wastewater (TWW) analysis January 2016

Measurement results from the Becromal factory at Akureyri

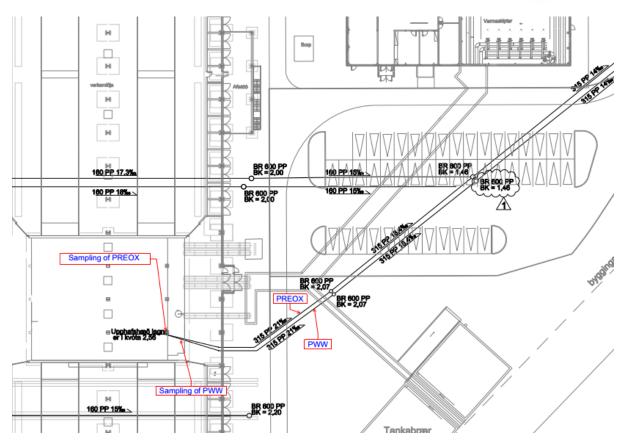
REPORT - INFORMATION SHEET				
Report Title		Report Type		
Wastewater Measurements		Measurement Report		
Project		Client		
Measurements of Total Wastewater (TWW) from the Becromal factory at Akureyri 2016		Becromal Iceland		
Project Manager – EFLA	Project Manager / Clien	t Representative		
Páll Höskuldsson	Christopher R. 1	Tucker		
	Urszula Tlolka			
Author	Report Nr.	Project Nr.	Total pages	
Páll Höskuldsson	1	3848-007	9	
In January 2016 TWW (total wastewater) was mo analysed for chemical composition. Flow, tempera compared to discharge limits in the operating permi	ature and pH we			
Keywords				
Wastewater, Chemicals, Discharge limits				
Report status	Report distribution			
Draft	□ Open			
Copy editing	□ With client permission			
⊠ Final				

Version history							
Nr.	Author		Reviewed		A	Approval	
	Name	Date	Name	Date	1	Vame	Date
	Páll Höskuldsson	14.3.2016					
1							
2							
				·			

1 PROJECT OBJECTIVES AND DESCRIPTION

In January 2016, TWW (total wastewater) from Becromal's factory in Akureyri was monitored over 3 days. Water samples were taken and analysed for chemical concentration and the flow, temperature and pH were also measured. Results were compared to discharge limits in the operating permit. The total wastewater (TWW) consists of two streams that mix together before being discharged to the municipal wastewater system. These streams are:

- Production wastewater (PWW) from diverse processes at the plant, e.g. from the cleaning of filters and regeneration of deionizing resins. Before being released to the effluent pipe the PWW is equalized in an equalization tank and neutralized in a neutralization tank. The outflow can vary considerably but is on average around 600 m³/day. The temperature is usually around 20°C.
- PREOX, hot 80-90 °C deionised water used for the pretreatment of pure aluminium foil and is assumed to be free of chemicals when released to the effluent. The flow is stable and less than 1,000 m³/day.


2 METHODS

Samples were collected over three days and one average sample was prepared for chemical analysis. Samples were taken from two sampling points as can be seen on picture 2-1. Photos of sampling equipment and locations can be seen in Pictures 2-2 to 2-5.

<u>Sampling point 1 – Sampling of PWW.</u> The sampling point is located inside the factory building where the water has just exited the neutralization tank, before being released to the effluent pipe. The samples were taken with an autosampler, taking continuous 22 mL subsamples every 8 minutes into 4 separate bottles every 24 hours. One average composite sample was made for each day, proportional to flow. Flow and pH were measured using fixed measurement instruments of the PWW-stream.

<u>Sampling point 2 – Sampling of PREOX.</u> The sample was taken from the PREOX-tank before being released to the effluent pipe. The tank is located inside in the basement of the factory building. A solenoid valve was installed on the PREOX-stream inlet to the tank. Every 5 minutes, the sampler collected 5 second samples into a small barrel. One sample was collected for every 24 hours, a total of 23 litres. The temperature and pH of the PREOX-stream were measured with fixed measurement instruments. The PREOX-flow was measured using a portable full-pipe flow meter inside the factory. From the day samples of the PWW and PREOX streams, one flow proportional average composite TWW sample was prepared for chemical analysis.

Picture 2-1: *Sampling points*

Picture 2-2: *Temperature- and pH-meters for the* **Picture 2-3:** *Sampling of Preox* measurement of Preox

Picture 2-4: Flow measurement of Preox with a Picture 2-5: Sampling of PWW with an auto portable full pipe flow meter

sampler.

3 RESULTS

3.1 Flow, temperature and pH measurements

Table 3-1 shows daily average values for TWW which consists of two streams:

- a) PWW, i.e. process wastewater.
- b) PREOX, hot 80-90 °C deionised water used for the pretreatment of pure aluminium foil.

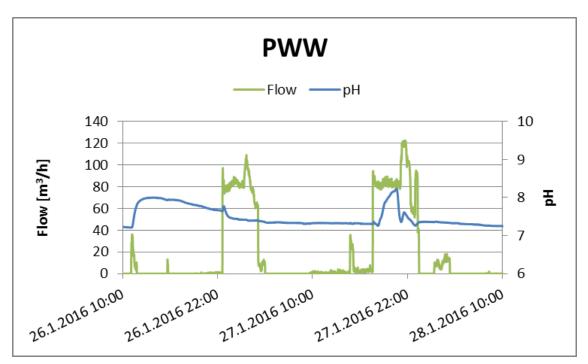
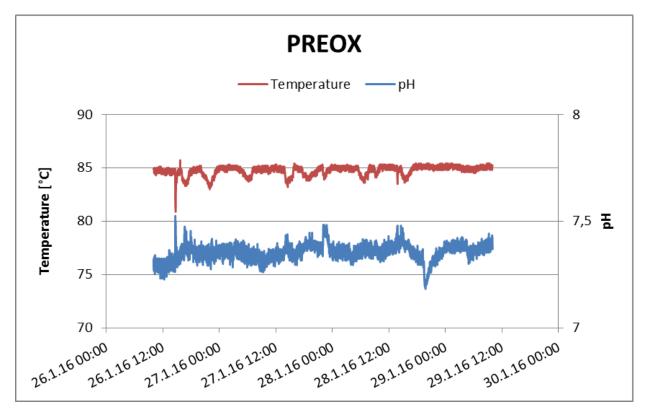

		•	
Date and time	PREOX	PWW	TWW
	[m³/d]	[m³/d]	[m³/d]
10:00 Jan 26 – 10:00 Jan 27, 2016	699	389	1,088
10:00 Jan 27 – 10:00 Jan 28, 2016	716	540	1,256
10:00 Jan 28 – 10:00 Jan 29, 2016	729	519	1,248
Average January 26-29, 2016	715	482	1,197

Table 3-1: Average flow rate per day of each stream and of the TWW.

TWW = PREOX + PWW


Picture 3-1 presents the flow and pH of the PWW-stream and picture 3-2 presents the temperature and pH of the PREOX-stream.

Picture 3-2 shows rather stable pH values, between 7.2 and 7.5 in the PREOX-stream during the measurement period. The temperature is quite stable around 85 °C.

Picture 3-1: Flow and pH of the PWW-stream, measured January 26-29, 2015.

Picture 3-2: Temperature and pH of the PREOX-stream, measured January 26-29, 2016.

3.2 Chemical Analysis

Table 3-1 presents chemical concentrations in the 3-day composite sample (26-29 January 2016). Results are compared to discharge limits and estimated release values in the operating permit.

Table 3-1: *Chemical concentration in the 3-day composite sample (26-29 January 2016) compared to discharge limits and estimated release values in the operating permit.*

		тww		Estimated	
Element	Unit	January 2016	Discharge limits*	release*	
TSS	mg/L	62,5	220		
COD	mg/L	30	500		
P	mg/L	46,9		9	
N	mg/L	5,25			
AI	mg/L	7,5		1	
В	mg/L	0,43		7	
Са	mg/L	7,8			
Fe	mg/L	0,1			
K	mg/L	3,8			
Mg	mg/L	2,1			
Na	mg/L	78,4		210	
S	mg/L	0,75		60	
EDTA	mg/L	2,5		6	
		,			
As	µg/L	<1			
Ва	µg/L	22,8			
Cd	µg/L	<0,05			
Со	µg/L	0,4			
Cr	µg/L	1,87			
Cu	µg/L	11,5			
Hg	µg/L	0,0306	50		
Mn	µg/L	2,13			
Мо	µg/L	15,2			
Ni	µg/L	48,8			
Pb	µg/L	4,16			
V	µg/L	8,83			
Zn	µg/L	185			

* According to operating permit

Table 3-2 presents the total chemical discharge per day based on the chemical concentration in the composite 3 day sample and average flow of TWW.

		TWW	Chemical discharge	
Element	Unit	January 2016	[kg/day]	
TSS	mg/L	62,5	74,8	
COD	mg/L	30	35,9	
Р	mg/L	46,9	56,1	
N	mg/L	5,25	6,3	
AI	mg/L	7,5	9,0	
В	mg/L	0,43	0,5	
_				
Са	mg/L	7,8	9,3	
Fe	mg/L	0,1	0,1	
К	mg/L	3,8	4,5	
Mg	mg/L	2,1	2,5	
Na	mg/L	78,4	93,8	
S	mg/L	0,75	0,9	
EDTA	mg/L	2,5	3,0	
As	μg/L	<1		
Ва	µg/L	22,8	0,0273	
Cd	µg/L	<0,05		
Со	µg/L	0,4	0,0005	
Cr	µg/L	1,87	0,0022	
Cu	µg/L	11,5	0,0138	
Hg	µg/L	0,0306	0,0000	
Mn	µg/L	2,13	0,0025	
Мо	μg/L	15,2	0,0182	
Ni	µg/L	48,8	0,0584	
Pb	µg/L	4,16	0,0050	
V	µg/L	8,83	0,0106	
Zn	µg/L	185	0,2214	

 Table 3-2: Chemical discharge per day.

ANNEX 1

Factory layout drawing

